PhD in Agri-Food Sciences, Technologies and Biotechnologies - UNIMORE

XXXIV CYCLE: III year

Investigation and development of innovative protocols and technologies to enhance food safety and to reduce food loss

Annual Workshop: December 17th 2021

PhD student: Francesco Bigi

Tutor: Prof. Dr. Andrea Pulvirenti

PhD STEBA School Co-ordinator:

Prof. Dr. Alessandro Ulrici

PROBLEMS

88 million

TONES FOOD WASTED/YEAR IN EUROPE

173 kg/year per person

25.8 million

TONES PLASTIC PACKAGING/YEAR IN EUROPE

CONSEQUENCES OF FOOD AND PLASTIC WASTE

FOOD LOSS

PROBLEMS

SOLUTIONS

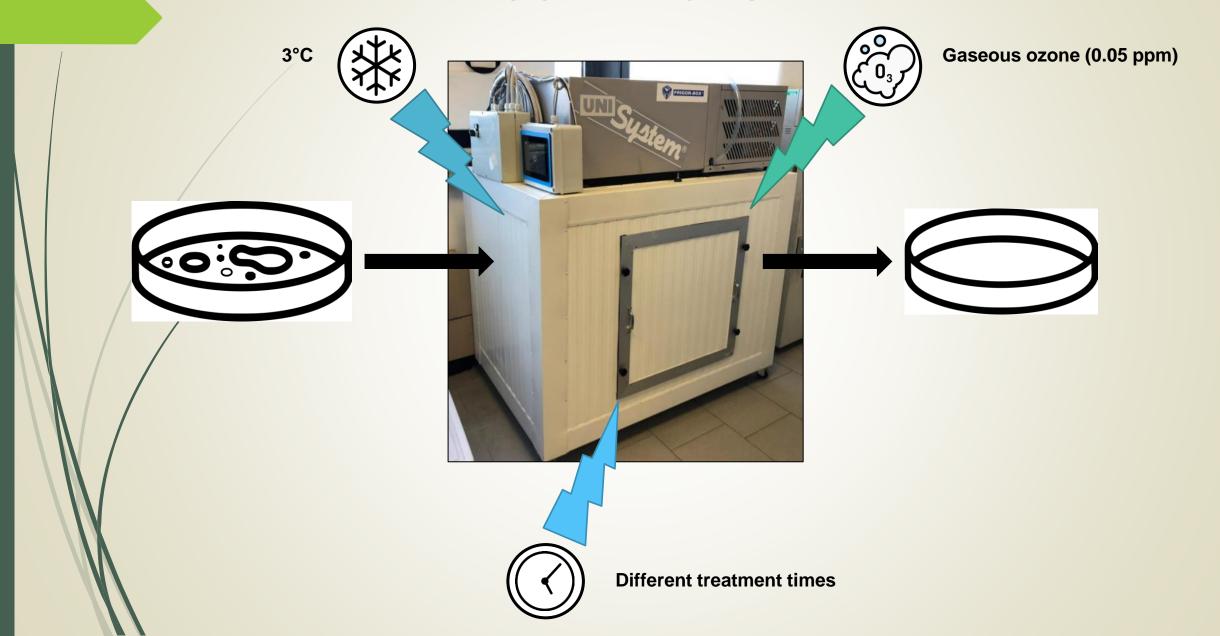
CASE STUDY 1

Received: 5 November 2020

Revised: 28 January 2021

Accepted: 7 February 2021

DOI: 10.1111/jfs.12892


ORIGINAL ARTICLE

Impact of low-dose gaseous ozone treatment to reduce the growth of in vitro broth cultures of foodborne pathogenic/spoilage bacteria in a food storage cold chamber

Francesco Bigi¹ | Hossein Haghighi¹ | Andrea Quartieri¹ | Riccardo De Leo¹ | Andrea Pulvirenti^{1,2}

https://doi.org/10.1111/jfs.12892

- ✓ Microbial quality of air and internal surfaces
- ✓ 2 treatment times (30 and 60 min)

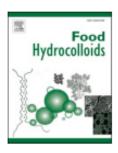
- ✓ Five food-borne pathogens (C. jejuni, S. Thyphi., E. coli, L. monocyt., P. fluorescens)
- √ 3 concentrations of inoculum
- ✓ 6 treatment times (1, 2, 6, 24, 30, 48 h)

RESULTS

Bacterial loads	Control	Ozone treatment (30 min)	Ozone treatment (60 min)
Internal surfaces (log ₁₀ CFU/m ²)	3.60 ± 3.18 ^b	2.61 ± 2.23 ^a	2.28 ± 2.02 ^a
Air (log ₁₀ CFU/m³)	1.81 ± 1.27 ^b	0.90 ± 0.60 ^a	0*

Bacterial strains (log10		Ozone treatment at 0.05 ppm						
CFU/plate)	Control	1 hr	2 hr	6 hr	24 hr	30 hr	48 hr	
C. jejuni	3.34 ± 1.86^{b}	1.11 ± 0.63 ^a	0	0	_	_	_	
	2.35 ± 1.69	0*	0	0	_	_	_	
	1.34 ± 0.45	0	0	0	_	_	_	
S. enterica	3.30 ± 1.89^{c}	U.C. [†]	U.C.	U.C.	1.69 ± 1.19 ^b	1.06 ± 0.55^{b}	0.15 ± 0.00^{a}	
	2.37 ± 1.10^{b}	2.34 ± 1.79 ^b	2.34 ± 1.85^{b}	2.35 ± 1.92 ^b	1.28 ± 0.15 ^a	0.60 ± 0.15^{a}	0	
	1.39 ± 0.33^{b}	1.30 ± 0.45^{b}	1.41 ± 1.25 ^b	1.42 ± 0.69 ^b	0.30 ± 0.15^{a}	0.18 ± 0.00^{a}	0	
E. coli	3.38 ± 1.72^{b}	U.C.	U.C.	U.C.	1.31 ± 0.33^{a}	1.24 ± 0.33^{a}	1.16 ± 0.33 ^a	
	2.37 ± 1.03^{e}	2.32 ± 0.45^d	2.10 ± 0.55^{c}	2.01 ± 0.15^{b}	0.60 ± 0.15^{a}	0.48 ± 0.15^{a}	0	
	1.38 ± 0.63^{b}	1.00 ± 0.15^{a}	1.04 ± 0.15^{a}	0.90 ± 0.15^{a}	0	0	0	
L. monocytogenes	3.34 ± 1.63^{b}	U.C.	U.C.	U.C.	1.39 ± 0.33 ^a	1.20 ± 0.15^{a}	1.04 ± 0.45^{a}	
	2.32 ± 1.19 ^c	2.29 ± 1.23 ^{bc}	2.21 ± 1.28 ^b	2.18 ± 1.56^{ab}	0.60 ± 0.15^{a}	0.18 ± 0.33^{a}	0	
	1.38 ± 0.63^{a}	1.26 ± 1.10 ^a	1.27 ± 1.03 ^a	1.00 ± 0.45^{a}	0*	0	0	
P. fluorescens	3.32 ± 1.55 ^c	2.12 ± 1.08^{b}	1.70 ± 0.93^{a}	1.63 ± 0.45^{a}	1.61 ± 0.55 ^a	1.54 ± 0.96^{a}	1.45 ± 0.96 ^a	
	2.34 ± 1.00^d	1.22 ± 0.33^{c}	1.06 ± 0.33 ^{bc}	0.90 ± 0.15^{ab}	0.60 ± 0.45^{ab}	0.60 ± 0.15^{ab}	0.48 ± 0.15^{a}	
	1.28 ± 0.45^{b}	0.30 ± 0.15^{a}	0	0	0	0	0	

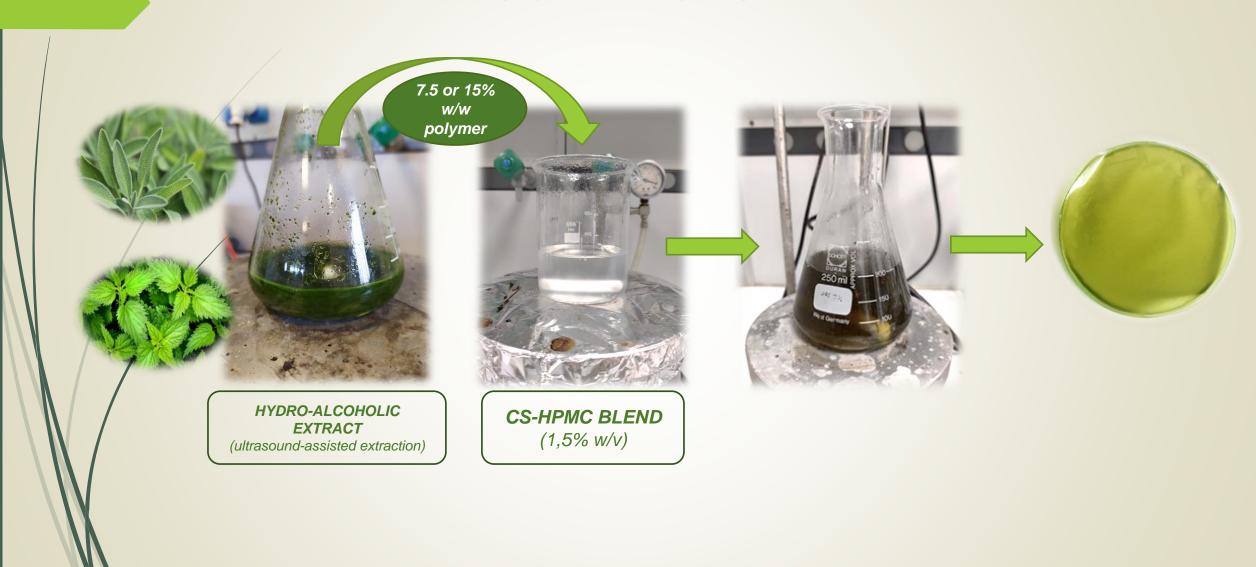
CASE STUDY 2


Food Hydrocolloids 120 (2021) 106979

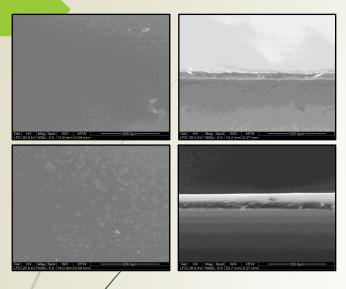
Contents lists available at ScienceDirect

Food Hydrocolloids

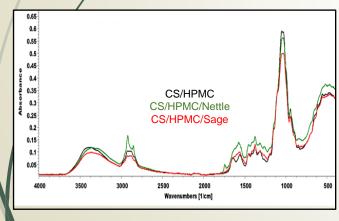
journal homepage: www.elsevier.com/locate/foodhyd



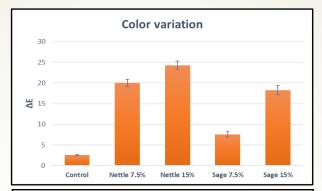
Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications

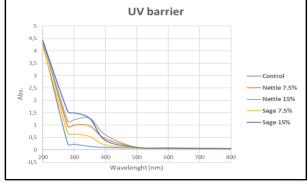

Francesco Bigi ^{a,1}, Hossein Haghighi ^{a,*,1}, Heinz Wilhelm Siesler ^b, Fabio Licciardello ^{a,c}, Andrea Pulvirenti ^{a,c}

https://doi.org/10.1016/j.foodhyd.2021.106979



RESULTS

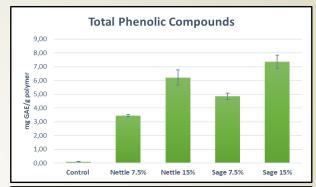

MICROSTRUCTURE

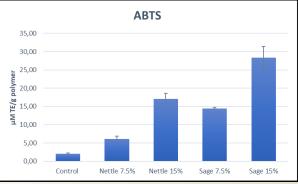


FT-IR SPECTROSCOPY

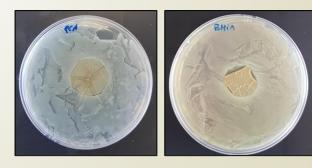


OPTICAL PROPERTIES





WATER PROPERTIES

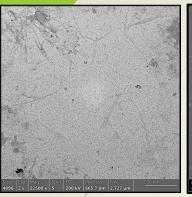


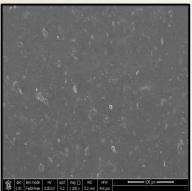
ANTIOXIDANT PROPERTIES

ANTIBACTERIAL ACTIVITY

CASE STUDY 3

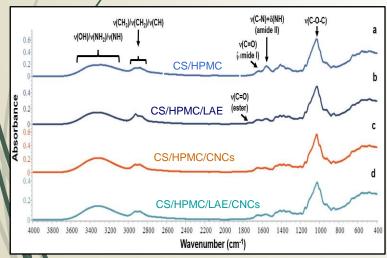
Nanocomposite active films based on chitosan/hydroxypropyl methylcellulose blend enriched with orange peel cellulose nanocrystals and lauroyl arginate ethyl as a novel food packaging solution

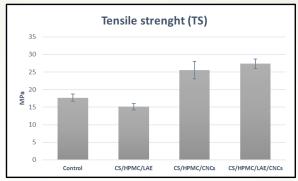

Francesco Bigi, Enrico Maurizzi, Heinz Wilhelm Siesler, Andrea Pulvirenti , Hossein Haghighi

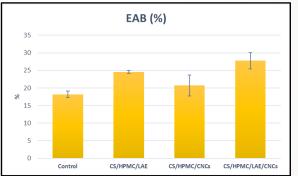

Submitted to: Food Packaging and Shelf Life

RESULTS

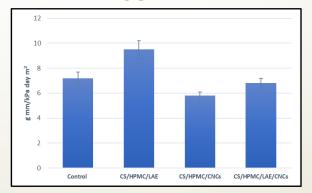
MICROSTRUCTURE



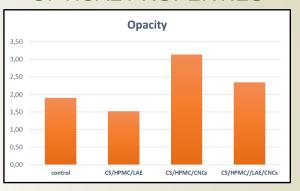

TEM image of orange CNCs

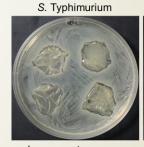

SEM image of CS/HPMC/CNCs/LAE film

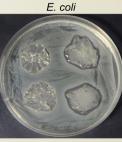
FT/IR SPECTROSCOPY



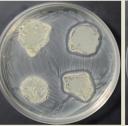
MECHANICAL PROPERTIES




WATER VAPOUR PERMEABILITY



OPTICAL PROPERTIES


ANTIBACTERIAL ACTIVITY

L. monocytogenes

P. fluorescens

THANKS FOR YOUR ATTENTION!!