

NOVEL BREEDING APPROACHES FOR THE IMPROVEMENT OF PROFESSIONAL SEED PRODUCTION IN HORTICULTURAL CROPS

University of Modena and Reggio Emilia, Research Doctorate in Agri-food sciences, technologies and biotechnologies

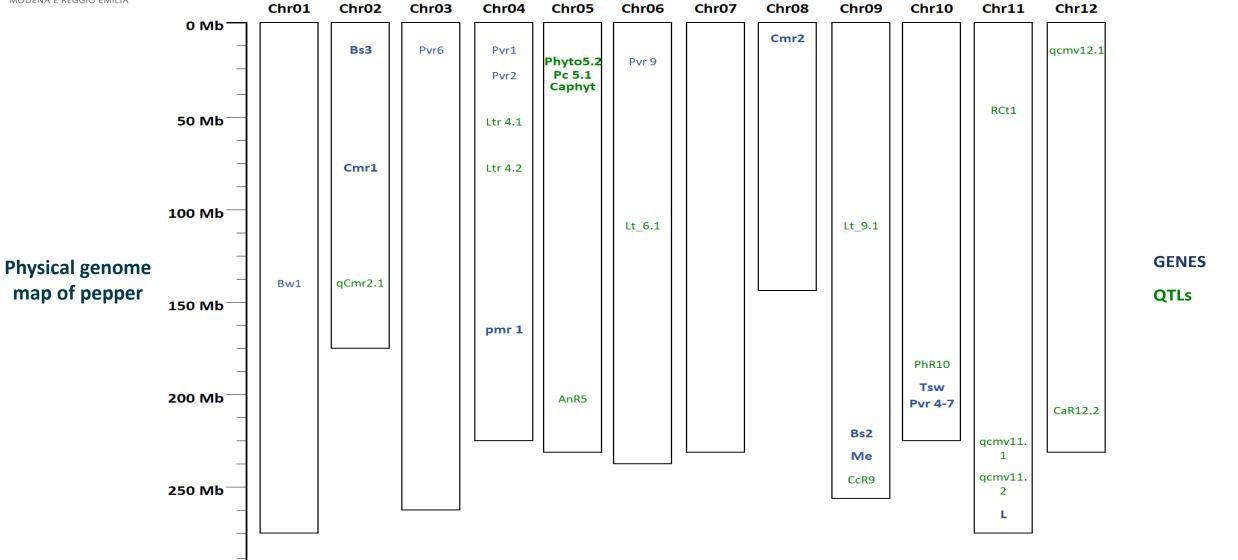
Academic tutor: Prof. Enrico Francia

Academic co-tutor: Dr. Justyna Anna Milc

Company tutor: Dr. Massimiliano Ballardini

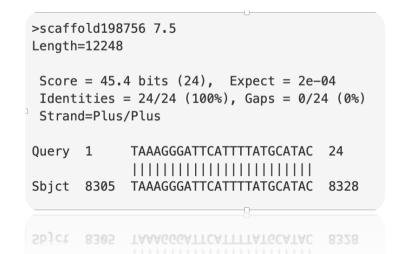
Industrial Ph.D Candidate: Dr. Marco Martelli

Cycle - XXXV


Ph.D Workshop - 2021, December 17th

300 Mb

GENES AND QTLs AGAINTS CHOSEN PEPPER PATHOGENS



ASSOCIATED MOLECULAR MARKER IDENTIFICATION

- ✓ Blast searches for nucleotide sequence homology
- ✓ Primer retrieved from literature were aligned to genome sequence to confirm their correspondence

RETRIEVED PRIMER PAIRS

√ 42 primer pairs whose sequence was confirmed were chosen for the preliminary analysis of parental genotypes

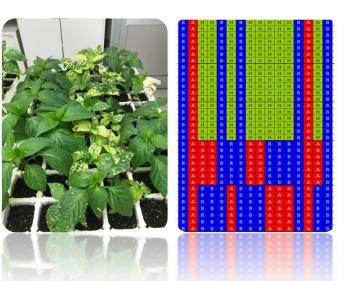
	marker	marker	primer	1-1-1	
gene/qtl	name	type	F(for)R(Rev)	label name	primer sequence
Phyto.5.2 (QTL)	CAMS420	ssr	PhCAMS420F	Ph420F	CACGACGTTGTAAAACGACCAGCGTTCTATCGTCTCAAATG
			PhCAMS420R	Ph420R	TTGACAAACCAGAAATTGATCG
Phyto.5.1 (QTL)	P5-SNAP	caps	PhP5-SNAPF1	PhP5F1	TCATGAGGTTGCTATTAAGATTGGTCCTGTTATATA
			PhP5-SNAPF2	PhP5F2	GAGGTTGCTATTAAGATTGGTCCTGTTATCCG
			PhP5-SNAPR	PhP5R	CATAGAAAGGGATATCATCTGGTACATGCAGAAA
Phyto.5.1 (QTL)	Phyto5NBS1	snp	Phyto5NBS1F	PhNBS1F	CATACAGCCAAAGTTAGAGC
			Phyto5NBS1R	PhNBS1R	GCATAGAGTTCTCCCATTTC
Phyto.5.1 (QTL)	Phyto5SAR	snp	Phyto5SARF	PhSARF	GGGCAGAAAGATTACAATGTC
			Phyto5SARR	PhSARR	TTTTATTCTCACACCATACACG
PhR10 (dominant gene, Phyto.5.2	P52-11-21	ssr	PhP52-11-21F	PhP21F	CACGACGTTGTAAAACGACCAATCCAAACAAGTCCTAAG
QTL)			PhP52-11-21R	PhP21R	GGTGCAATTGAAAATCTAAG
PhR10 (dominant gene, Phyto.5.2	P52-11-41	ssr	PhP52-11-41F	PhP41F	CACGACGTTGTAAAACGACTTGATGAGATGGGAAGTAAA
QTL)			PhP52-11-41R	PhP41R	CACCAACAATAATAGAACTACA
Phyto.5.2 (QTL)	ZL6726	ssr	PhZL6726F	PhZLF	CACGACGTTGTAAAACGACTCCAGCCATCCATTATTTCAT
			PhZL6726R	PhZLR	ATCCCGAACTGCCAATAATTA
Phyto.5.2 (QTL)	CA524065	ssr	PhCA524065F	PhCAF	CACGACGTTGTAAAACGACTCTCTCTCTACATCTCTCCGTTG
			PhCA524065R	PhCAR	TGTCGTTCGTCGACGTACTC
Phyto.5.1 (QTL)	NBS1-CAPS	caps	PhNBS1-CAPSF	PhNBSF	AGGACTTTGATAAGGTTTC
			PhNBS1-CAPSR	PhNBSR	TGCAATATAGAGCTTCTGCTG
L3	PMFR11	scar	TVPMFR11F	TVPMFRF	CTGCAGAACAACAATGGCACG
			TVPMFR11R	TVPMFRR	GGACTGCAGAGGAAGC
L3	L3-SCAR	scar	TVL3-SCARF	TVL3F	AACAATTTACAAATAATACACAAGGC
			TVL3-SCARR	TVL3R	TTGGGAAGGAAAGACATCAT
L3	A339-NK	scar	TVA339-NKF	TVA339F	TCTCGGTAGGCCATTTTGCT
			TVA339-NKR	TVA339R	GTAAGTTGCTATGCCCACCA
L3	A339-NK	scar	TVA339-NKR	TVA339R	GTAAGTTGCTATGCCCACCA
			TVA339-NKF	TVA339F	TCTCGGTAGGCCATTTTGCT
-			TVL3-SCARR	TVL3R	TTGGGAAGGAAAGACATCAT

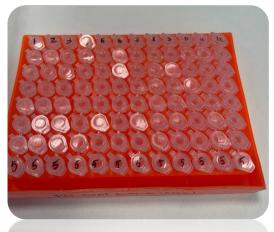
WORKFLOW

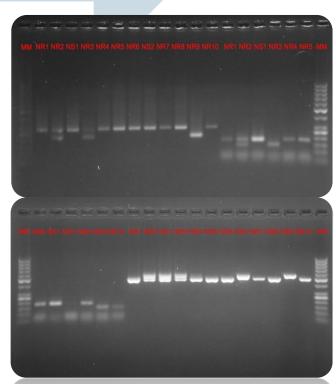
COLLECTION SET UP

160 genotypes choice

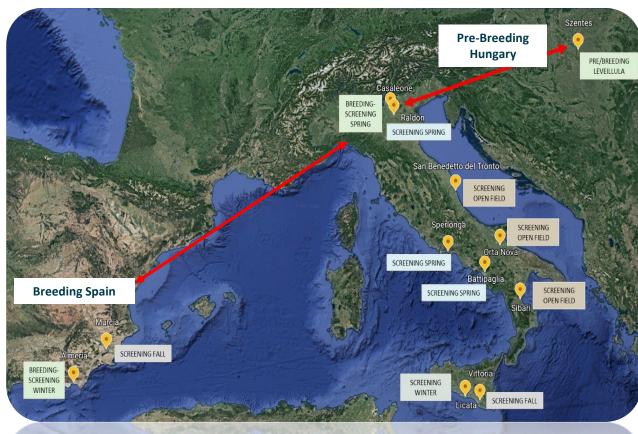
CHECKING RELIABILITY


pathology and fingerprinting

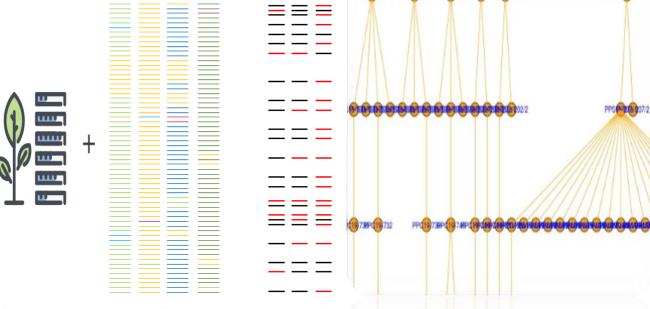

GENOMIC DNA EXTRACTION and STORAGE


5 plates

PCR OPTIMIZATION PROTOCOL


PRE-BREEDING ACTIVITIES

- ✓ PRE-BREED CROSSES: performed ca. 100 new combinations for gene introgression and variability expansion.
 - ✓ **MULTILOCATION FIELD TRIAL**: evaluation in selective envinroments



CONCLUSION and FUTURE PERSPECTIVE

PREDICTIVE INFORMATION DERIVED FROM MULTI-GENE INVESTIGATION IS PERMITTING A FIRST IMPROVEMENT OF SELECTION PROCESS WITH RELATED GENE PYRAMIDING TIME REDUCTION

Thank you for your attention!

