

Exploring advanced approaches for enhancing the production of exopolysaccharides from acetic acid bacteria

University of Modena and Reggio Emilia Research Doctorate in agri-food sciences, technologies and biotechnologies Cycle – XXXV 17th DECEMBER 2021

Tutor: Prof. Maria Gullo

Co-Tutor – Dr. Salvatore La China

Coordinator: Prof. Alessandro Ulrici

Candidate: Kavitha Anguluri

Types of exopolysaccharides and production pathway

- Acetic acid bacteria are versatile in nature
- The key compounds produced by AAB include acetic acid, bacterial cellulose, dihydroxyacetone, gluconic acid and levan
- Many studies focusing on altering culture conditions and genetically modified strains to improve yield

Selecting carbon source and oxygen availability for high levan yield

Most of the AAB strains utilize sucrose as a carbon source for levan production

70 and 250 g/L of sucrose was used to test the levan production with 140 and 200 rpm.

- High sucrose concentration helps in more levan formation
- High agitation speed enhance the enzyme substrate bonding
- Variability in phenotypic behavior was observed for utilizing carbon source and related levan yield
- Carbon source accumulation and pH is showing impact on levan yield

Evolutionary laboratory adaptation approach for BC production

Komagataeibacter xylinus -K2G30 (UMCC 2756)

Adaptation ability of strain?
Optimum conditions for suitable adaptation

Time for new adaptation and impacting factors?

Short-term and long-term adaptation

BC yield over period

- BC yield was stable until 8 cycles which further shows 20% increase after 25 cycle of adaptation
- At the end of 30th cycle, more than 40% increase in yield was observed which is the highest among all conditions.
- Strain adapted in mannitol for 30 cycles also showed increase in yield in glucose medium when cultured back

•

Carbon source consumption vs BC

Gluconic acid and pH

- Significant differences were observed in adapted strain among carbon consumption and BC production.
- Gluconic acid production was seen only in glucose-based media which resulted in reduction of pH.
- Strain adapted in mannitol for 30 cycles showed less production of gluconic acid with increase in BC yield.

CONCLUSIONS:

This study is helpful to understand the complex interactions between short term and long-term adaptation of strains to environmental conditions.

Continuous adaptation of strain to the new environment resulted in great yield without any application of genetic engineering.

Although glucose is a preferred carbon source, production of gluconic acid and low pH effecting the BC production

Mannitol can be alternative carbon source because of its : High yield Stable pH

THANK YOU

TUTOR: Prof. Dr. Maria Gullo (maria.gullo@unimore.it) CO-TUTOR: Dr. Salvatore La china (Salvatore.lachina@unimore.it) TEAM: Kavitha Anguluri (kavitha.anguluri@unimore.it) Marcello Brugnoli (marcello.brugnoli@unimore.it)