

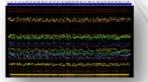
High throughput plant phenotyping system for durum wheat breeding

Ivano Pecorella (1,2)

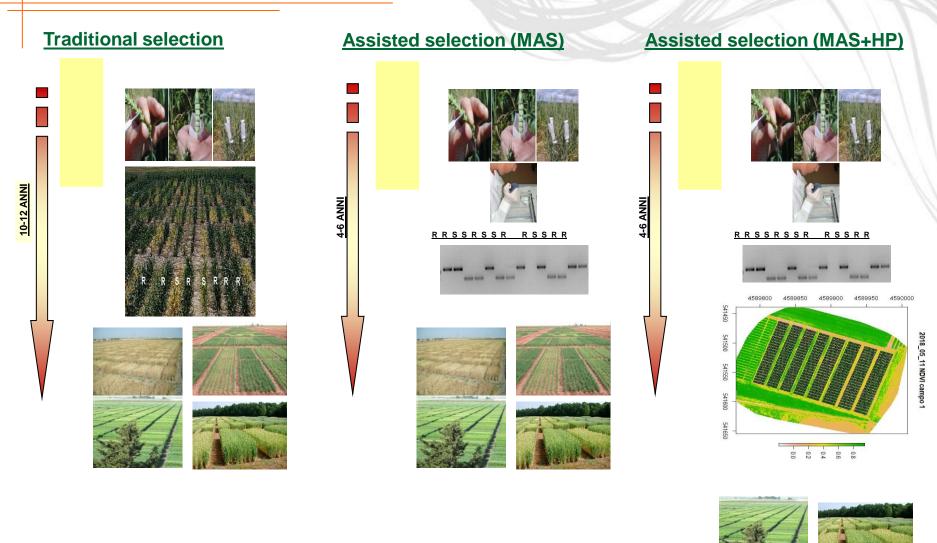
Pasquale De Vita (1)

(1) CREA Cereal Research Centre for Cereal and industrial Crops S.S. 673, km 25.200 71122 Foggia

(1,2) Università degli Studi di Modena e Reggio Emilia Via Università, 4 – 41121 MODENA



The Center deals, with a multidisciplinary approach, in the supply chains of cereals and industrial crops for human, animal and non-food uses. It also guarantees the conservation and enhancement of biodiversity through the use of -omics sciences (i.e.genomics, metabolomics and phenomics)



Plant breeding methods

Phenotyping – the new bottleneck

Genomics is accelerating gene discovery but how to establish gene function and development of new genotypes?

Phenotyping is important for

- ➤ functional analysis of specific genes
- ➤ forward and reverse genetic analyses
- >production of new plants with beneficial characteristics

Characterization

- ➤ in different growth conditions
- ➤of many different lines
 - mutant populations
 - mapping populations
 - breeding populations
 - germplasm collections

The Hight-throughput phenotyping system must be:

- More efficient than the traditional visual or technological one (It should cost less, and must allow to reduce time and labor)
- 2. Accurate as the traditional one, with reduction of effects due to spatial variability, to gradients in the selection field, or to different operators;
- 3. More informative, in the sense that it must allow to detect new phenotypic characters, even complex ones, or expression of physiological processes; characters that with traditional methods are difficult or impossible to evaluate.

Use of drone to achieve a high-throughput phenotyping platforms

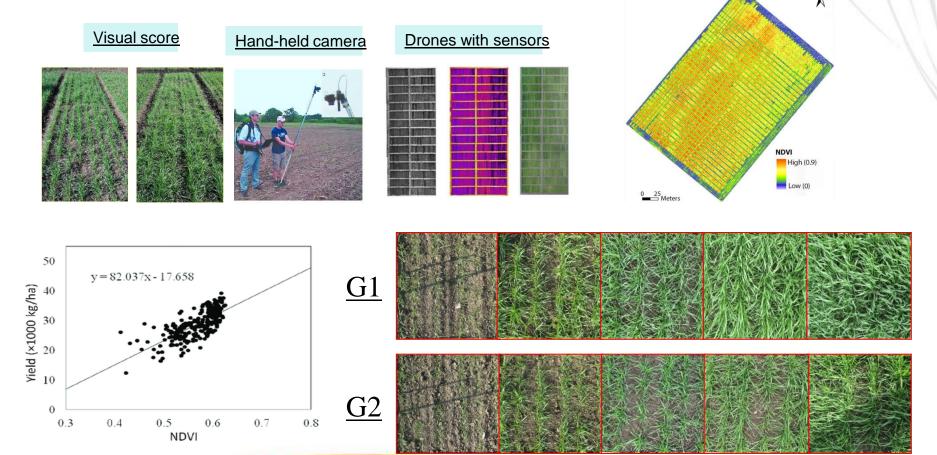
Traits of interest

Traits	Brooding of	operation wh	on coloction is co	anducted
ITAILS	All generation s	F3	en selection is co	Advanced Breeding lines
Simple traits				
Diseases	visual	visual	visual	visual
Plant height	visual	visual	visual	visual
Heading date & Phenology	visual	visual	visual	visual
Soil coverage			visual	visual
Complex traits				
Yield			visual and instrumental	instrumental
Canopy temperature			instr.l (small plots)	instr.l (plots)
Stomatal conductance		instr.l (plants)	Instr.I (plants)	
Chlorophyll content		instr.l (plants)	instr.l (plants)	

Flight plan

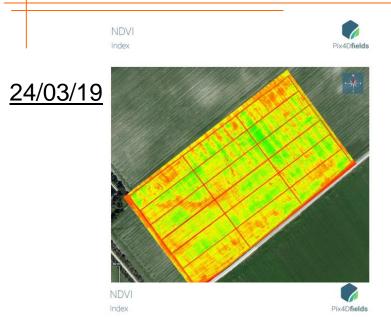
Traits detected at CREA of Foggia

	Traits	Breeding gene	ration w	hen selection t	o be conducted
		All generations	F3	F4-F6	Advanced Breeding lines
	Simple traits				
	Diseases	Multis	spectral (NDVI), Thermal	camera
	Plant height		L	aser scan	
)	Heading date		R	GB camera	
)	Soil coverage		RGB	camera/NDVI	
	Complex traits				
	Yield		Multis	spectral (NDVI)	
	Canopy temperature		The	ermal camera	
	Stomal conductance		The	ermal camera	
	Chlorophyll content		Multis	spectral (NDVI)	

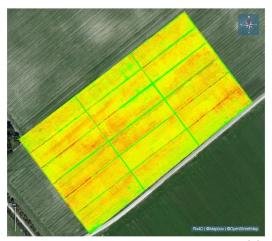


Soil coverage

Parrot Bluegrass for NDVI analysis of 2000 plots of durum wheat(2h)


High throughput is essential for phenotyping

Precision Agricolture #1

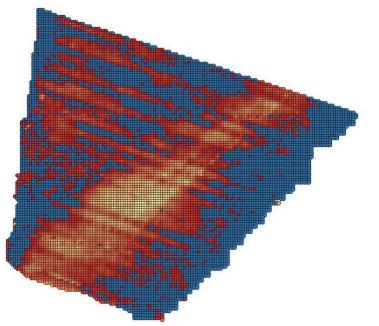


30/05/19	*

lavorazioni	Resa	Peso ettolitrico	Proteine
aratura	41,8	84,4	12,5
dracula	41,5	83,5	12,6
veloce	42,1	84,6	11,6
epoca semina	Resa	Peso ettolitrico	Proteine
novembre	41,5	85,0	11,3
dicembre	41,9	84,0	12,4
interfila semina	Resa	Peso ettolitrico	Proteine
conv15	41,9	84,5	12,0
conv30	42,0	83,7	12,5
seminbio	41,6	83,8	12,4
strigliatura	Resa	Peso ettolitrico	Proteine
no	42,3	84,5	12,1
si	41,3	83,8	12,4

12/06/19

NDVI


Pix4Dfields

Precision Agricolture #2

