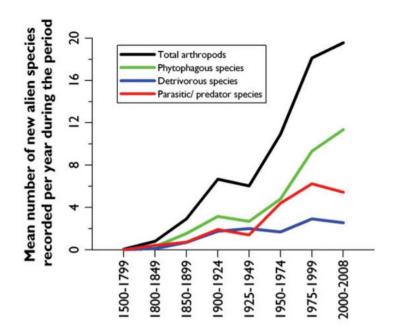

Development of mathematical models supporting sustainable agriculture in Europe

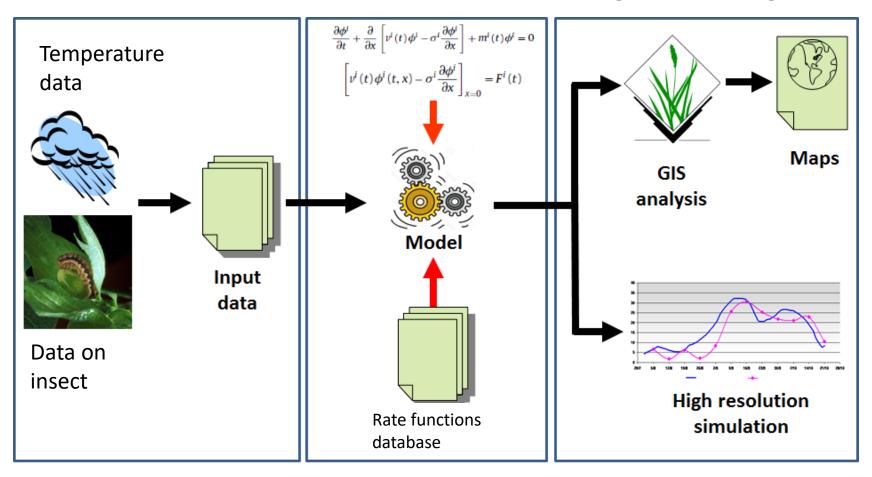
Giorgio Sperandio

giorgio.sperandio@unimore.it


Tutors: Prof. Gianni Gilioli, Prof. Lara Maistrello

Insect pests and invasive species: a global threat

- Economic impact: costs to agriculture ~ 300 billions \$/year worldwide
- Environmental impact: threat to the structure of ecological communities and ecosystem services (agricultural and forestry production, resources availability)
- Social and health impact: more than 100 species may cause impacts to human health



The number of new records of arthropod alien species is increasing over time

Source: Roques, 2010. Biorisk

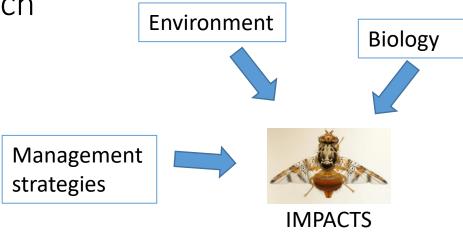
Tools supporting the sustainable management of insects

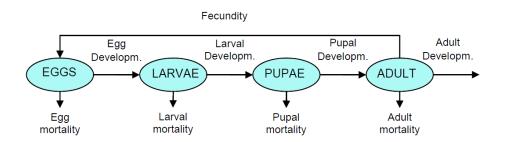
Large scale management

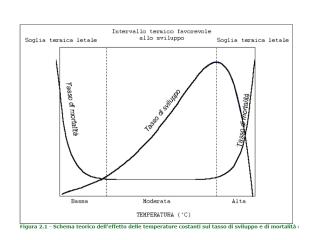
Field-based management

The overall modelling approach

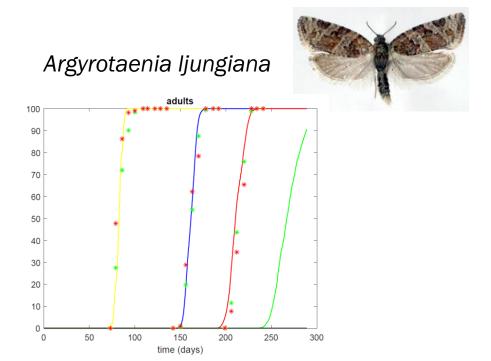
Multi-dimensional approach

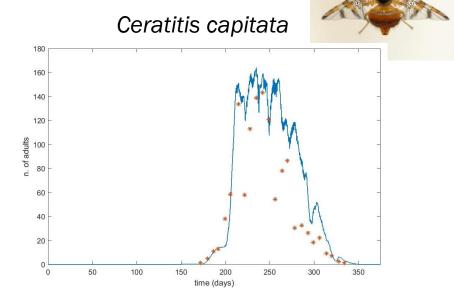

Deal with the main drivers and processes involved




Represent the biology, life-cycle, lifehistory strategy

Capture insects' physiological responses


Realistically represent the influence of external drivers (e.g. temperature) on insects physiology and population dynamics

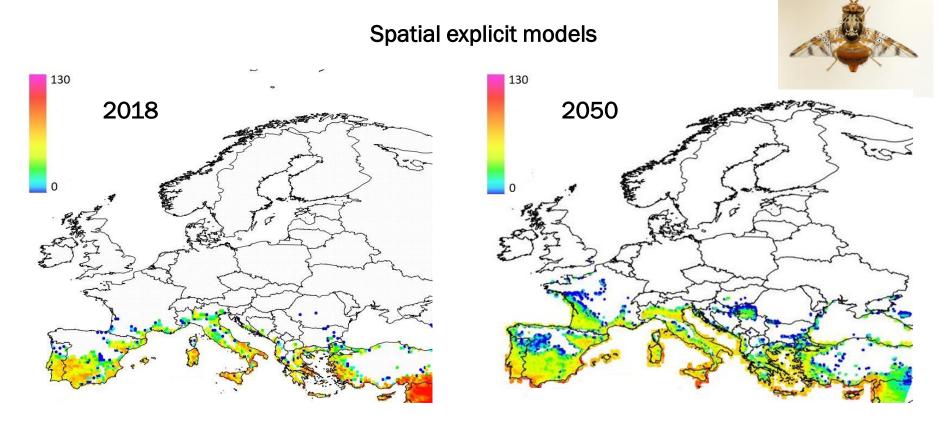


Models supporting IPM

Phenological models

Predicting the emergence of threatening pest stages

Population dynamics models


Predicting the population dynamics of a pest, the abundance and the potential impact

Supporting

- The implementation of monitoring activities
- The application of pest control actions
- The assessment of pest's potential impacts (at local level)

Models supporting pest risk assessment

Simulating the current and the projected potential distribution and abundance of pests

Supporting:

- The assessment of pest's potential distribution and impacts (large scale)
- Identification of areas at higher risks
- The comparative assessment of scenarios linked to climate, management, land characteristics etc.

Future directions - Composite modelling approach:

Step 1: Step 2: Step 3: Individual-based models Population dynamics models Models for spatial dynamics 8.0 1500 development rate 1000 -1000 -1500 20

temperature

Scientific outputs

Publications in scientific Journals: 5

- Rossi, V., **Sperandio, G**., Caffi, T., Simonetto, A., & Gilioli, G. (2019). Critical Success Factors for the Adoption of Decision Tools in IPM. *Agronomy*, *9*(11), 710.
- Pasquali, S., Mariani, L., Calvitti, M., Moretti, R., Ponti, L., Chiari, M., **Sperandio, G.**, Gilioli, G. (2019). Development and calibration of a model for the potential establishment and impact of *Aedes albopictus* in Europe. *Acta tropica*, 105228.
- **Sperandio, G.**, Simonetto, A., Carnesecchi, E., Costa, C., Hatjina, F., Tosi, S., & Gilioli, G. (2019). Beekeeping and honey bee colony health: A review and conceptualization of beekeeping management practices implemented in Europe. *Science of the Total Environment*, 133795.
- Gilioli, G., **Sperandio, G**., Hatjina, F., Simonetto, A. (2019). Towards the development of an index for the holistic assessment of the health status of a honey bee colony. *Ecological Indicators*, 101, 341-347.
- Gilioli, G., Simonetto, A., Hatjina, F., **Sperandio, G**. (2018). Multi-dimensional modelling tools supporting decision-making for the beekeeping sector. *IFAC-PapersOnLine*, 51(5), 144-149.

Scientific outputs

Projects' involvement: 4

- GESPO Nuovi metodi di lotta nella gestione integrata di *Popillia japonica*
- Modelli a supporto della gestione sostenibile delle strategie fitosanitarie contro parassiti delle colture
- Assessment of impacts of plant pests under climate change
- Messa a punto di un protocollo di campionamento per popolazioni di Anopheles spp. e verifica del loro potenziale ruolo come vettori di patogeni emergenti

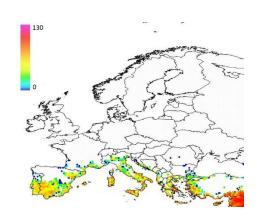
Participation to symposia: 2

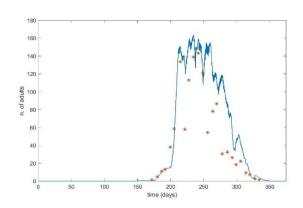
IX Annual Meeting, European PhD Network "Insect Science", 14-16 November, 2018

Oral presentation

• **G. Sperandio**, S. Pasquali, G. Schrader, A. Wilstermann, G. Gilioli (2018). Physiologically-Based Demographic Models for assessing the impact of invasive alien species in the light of climate change: a case study on *Ceratitis capitata*

Poster presentation


• **G. Sperandio**, A. Simonetto, E. Carnesecchi, C. Costa, F. Hatjina, S. Tosi, G. Gilioli (2018). Beekeeping and honey bees: a conceptual framework for the classification of beekeeping management practices implemented in Europe


XI European Congress of Entomology, 2-6 July, 2018

Poster presentation

• **G. Gilioli, A. Simonetto, F. Hatjina, G. Sperandio** (2018). multi-dimensional modelling tools for the assessment of honey bee colony health, Productivity and Pollination services

Thanks for your attention!

Giorgio Sperandio

giorgio.sperandio@unimore.it

Tutors: Prof. Gianni Gilioli, Prof. Lara Maistrello

