

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Application of versatile Acetic Acid Bacteria to innovative bioprocesses

Ph.D. candidate: Gabriele Zanichelli Supervisor: Dr. Maria Gullo

Ph.D. Workshop in Agri-Food Sciences, Technologies and Bio-Technologies 1 December 2017, Reggio Emilia (RE) Italy

Versatility of Acetic Acid Bacteria

Feasible acetic acid fermentations of alcoholic and sugary substrates in combined operation mode

Published on:

Process Biochemistry 51, 1129-1139, 2016

Part 1 Implementation of a combined system (static and submerged)

A. pasteurianus UMCC 1754

- High acetic acid production rate
- Efficient start-up and persistence
- Phenotypic stability
- No production of undesired products
- Low nutritional needs

4 DIFFERENT VINEGARS

STATIC SYSTEM

TA: Titratable acidity; EtOH: Ethanol; TC: Total concentration

- SSC-A to start-up submerged fermentation
- SSC-B to prototype scale
- Slow fermentation
- SSC-C, D wine
- SSC E grape must
- Fast fermentation

Time (Days)

SUBMERGED SYSTEM

Part 1 Cultures performance at prototypal scale

Conclusions

Combined fermentation by *A. pasteurianus* UMCC 1754 yielded viable SSCs at both laboratory and prototype scales

Process stability in static, submerged and prototypescale confirmed the feasibility of using SSCs in industrial vinegar fermentations Increased production of bacterial cellulose as starting point for scaled-up applications

Published on:

Applied Microbiology and Biotechnology 101, 2017

- D-glucose with $\beta(1-4)$ glycosidic bond
- Synthetized by cellulose synthase (CS)
- High purity
- High degree of crystallinity
- High W.A.R. and resistance to tensile strength

Cellulose production

Culture optimization

Ethanol is an additional energy source so it allows glucose to be used mainly for BC synthesis

CARBON SOURCES CONSUMPTION AND BC PRODUCTION

Part 2 15 days of static cultivation in vessel (S/V 0.23 cm⁻¹)

Broth	рН		Glu (g/L)		*EtOH (g/L)	G.A (g/L)	A.A (g/L)	BC g/L	BC/ cons sugar (g/g)
	Initial	final	initial	final	final				
GY	5.40	3.14	50.00 ± 0.03	15.73 ± 0.03	0.00	22.23 ± 0.05	0.00	13.25 ± 1.11	0,39
GET	6.37	4.45	50.00 ± 0.02	18.00 ± 0.08	2.20 ± 0.08	11.46 ± 0.05	0.67 ± 0.08	19.64 ± 0.94	0,61

OPTIMIZED CONDITIONS

- BC production increased of 30%
- Gluconic acid was ~ 50% lower
- Final pH was higher
- g of BC produced per consumed sugar increased

*GET: Initial Ethanol: 14% Glu: glucose EtOH: ethanol GA: gluconic acid A.A: acetic acid BC: bacterial cellulose

Part 2

Structural analysis of bacterial cellulose produced by K2G30

Absorbed water

- The highest yield was achieved by K2G30 by static cultivation among 34 studied strains
- Enhanced culture conditions increased BC production of 30%
- High-purity BC with high degree of crystallinity (80%) and WAR (400%)

Selected strain was able to produce high amount of BC suitable for biomedical applications and food processing

Screening and selection of acetic acid bacteria for fructans production

Background, aim and strategy

Identification of the screening conditions

Strain	Sucrose concentra	tion	
	250 g/L	300 g/L	
NBRC 101099 ^T	+	+	
UMCC1754	+	weak	
UMCC 1789	+	weak	
DSM 3509 [⊤]	+	+	
DSM 2343	+	+	
DSM 2004 [⊤]	+	+	
UMCC 2756	+	+	

OSMOTOLERANCE SCREENING

- Most AAB strains can grow at 300 g/L of sucrose
- A. pasteurianus strains prefer lower concentration

250 g/L MAXIMUM SUCROSE CONCENTRATION

SCREENING OF FRUCTAN PRODUCTION

STANDARD CONDITIONS

- Sucrose concentration: 70 g/L
- Shaking speed: 140 rpm

OPTIMIZED CONDITIONS

- Sucrose concentration: 250 g/L
- Shaking speed: 200 rpm

Fructan production optimization

- Neoasaia chiangmaiensiss showed the highest fructan production in both conditions
- Acetobacter and K. xylinus strains produced about 5 g/L in both conditions

CELLULOSE SCREENING AND EXTRACTION

Strain	QUALITATIVE BC PRODUCTION TEST				
	HS-G	HS-S			
NBRC					
101099 ^T	-	-			
DSM 2343	-	-			
DSM 2004 [⊤]	+	+			
DSM 3509 [⊤]	-	-			
UMCC1754	-	-			
UMCC 1789	-	-			
UMCC 2756	+	+			

FRUCTANS EXTRACTION PROTOCOL

- Centrifugation
- + 2 Volume of cold ETOH
- Precipitation
- Centrifugation
- Levan-pellets collected
- Levan purification

FRUCTAN CHARACTERIZATION

Preliminary results showed a FT-IR spectra of pure levan

Fructans extracted by ethanol precipitation

Neoasaia chiangmaiensis NBRC101099 showed the highest fructan production in both standard and optimized culture conditions

Strains suitable for industrial production

Komagataeibacter strains showed a considerable production of both fructans and cellulose

K. xylinus strain UMCC 2756 is suitable to develop functional foods and beverages

General conclusions of the Ph.D. project

- High versatility of Acetic Acid Bacteria opens wide perspectives in both food and non food industry
- Possibility to develop new products
- Research on small scale is essential to improve the processes on large scale

Performing a further engineering of the investigated processes is the most suggested development, both in research and industrial scale

A special thanks to...

Vignola Foundation (Modena, Italy)

Aceti speciali da mosti d'uva della toscana. MISURA 124-PSR 2007-2013 Regione Toscana

Saporea, Verona, Italy

San Giacomo s.r.l

Antonella Sola of

Dipartimento di Ingegneria "Enzo Ferrari"

Monia Montorsi of

UNIMORE

Dipartimento di Scienze e Metodi dell'Ingegneria