

Doctorate in Agri-Food Sciences, Technologies and Bio-Technologies Ph.D. Workshop, 1 December 2017

Development of chemometrics methods for fast and nondestructive charachterization of complex food matrices

Dott.ssa Giorgia Orlandi Tutor: Prof. Alessandro Ulrici Co-tutor: Dott.ssa Giorgia Foca

Outline

- Introduction:
 - The importance of colour for food
 - RGB images
- I Section:
 - A Graphical User Interface for the standardization of RGB images (POSTER PRESENTATION)
- ➤ I Section:
 - An Electronic Eye and Tongue for monitoring the grape ripening
- Conclusions

The importance of colour for food

- \checkmark The very first evaluation of food is often based on its visual aspect.
- Color is related to food chemical composition.

BLUE-VIOLET: anthocyanins

GREEN: chlorophylls, pheophytines

RED: lycopene and anthocyanins

YELLOW-ORANGE: beta-carotene (provitamin A)

WHITE: polyphenols, flavonoids, ...

From human to electronic eye

ELECTRONIC EYE:

- ✓ Fast
- ✓ Cheap
- ✓ Objective
- ✓ Reliable
- ✓ Transferable
- Sensitive
- Quantitative

RGB images

Development of chemometric methods for fast and non-destructive characterization of complex food matrices:

Graphical User Interface for the standardization of RGB images

Dott.ssa Giorgia Orlandi Tutor: Prof. Alessandro Ulrici Co-tutor: Dott.ssa Giorgia Foca

230 00 42 131 33 113

- The three R,G,B channels correspond to three matrices (tables of numbers) containing the R, G and B values, which are used as analytical measurements.
- The standardization of images is an important preprocessing step in order to guarantee the reproducibility of images.

An Electronic Eye and Tongue for monitoring the grape ripening

AIM OF THE WORK:

to develop a device based on the combination of Electronic Eye and Tongue technologies to easily assess the maturity levels of grapes:

- content of pigments (total anthocyanins, total flavonoids, Malvidin, Petunidin, Peonidin, Delphinidin, Cyanidin)
- colour attributes (colour index, tonality, colour composition, OD420%, OD520%, OD620%)

An Electronic Eye and Tongue for monitoring the grape ripening

90 samples (3 grape varieties × 3 grapevines × 5 harvest time × 2 measurement session) were analysed by means of an Electronic Eye and Tongue.

Data Fusion techniques were used to extract the information from the two matrices of signals.

HPLC and Vis spectrophotometry were used to determine the grape ripening parameters (i.e., Total Anthocyanins, Total Flavonoids, Colour Index....).

Calibration models were built on the fused dataset for quantification of the parameters.

Y variable	LVs	N° variables	RMSEC	RMSECV	RMSEP	R ² cal	R ² cv	R ² pred
TF (mg/L)	3	1522	16,09	20,45	24,68	0,895	0,83	0,687
TAnt (mg/L)	3	927	17,26	27,77	27,02	0,961	0,899	0,902
Ton	5	1287	0,07	0,11	0,09	0,969	0,922	0,935
CI	3	1866	0,85	1,35	1,02	0,938	0,842	0,913
OD420	4	735	2,27	2,58	3,82	0,965	0,954	0,897
OD520	5	1499	3,1	3,81	4,67	0,949	0,923	0,863
Df-3-glc (mg/L)	5	2244	2,69	4,28	8,1	0,868	0,665	0,631
Cn-3-glc (mg/L)	4	1051	1,18	2,18	6,44	0,881	0,593	0,2
Pt-3-glc (mg/L)	4	1586	4,03	5,58	5,51	0,892	0,792	0,858
Pn-3-glc (mg/L)	2	1231	6,6	6,83	11,31	0,678	0,654	0,512
Mv-3-glc (mg/L)	5	2024	12,78	27,16	27,49	0,978	0,902	0,865

Conclusions

- The results obtained by merging the information contained in the images of must and the information captured using amperometric sensors show the possibility to develop an easy-to-use, inexpensive and eco-friendly method not requiring any specific preparation of the sample for monitoring grape ripening.
- Work in progress: implementation of new data analysis tools in the "Colourgrams_GUI", which is a software developed by my research group in order to easily handle the colourgrams approach.

Doctorate in Agri-Food Sciences, Technologies and Bio-Technologies Ph.D. Workshop, 1 December 2017

